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A solution is given for the problem of Impressing a circular cylindrical press 
with a flat base in a packet of an arbitrary number of pl~e-para~el layers 
lying on a half-space. The layer and half-space are considered elastic porous 
bodies saturated with a fluid and possessing different elastic characteristics . 
Two extreme cages are considered, when the outer surface is completely per- 
meable or impermeable to the interstitial fluid. The condition of total adhe- 
sion of the layers is assumed on the boundary planes between the layers. 

The general solution, based on [l, 2]* of the contact problem for an elastic 
porous multilayered medium being consolidated is presented in Sect. 1, as ex- 
pressed in terms of multiple Bromwich and Hankel integrals. The solution of 
the contact problem is constructed in Sect. 2. Calculation methods used to 
obtain the numerical solution of the problem are described in Sect, 3 and results 
of cal~ulat~g the mag~~de of the press settlement and the intensity of its 
pressure in time are presented in the case of a two-layered half-space with 
different elastic and filtration characteristics. It is found that if the layer is 
sufficiently thin, but stiffer than the half-space, then inadmissible tensile stres- 
ses originate on the contact area as in the case of the analogous elasticity theory 
problem [3]. Therefore, the pressure distribution on the contact area between 
the press and the multilaye~d-half-spare being consolidated as a function of 
its elastc and geometric characteristics can differ qualitatively from the pres- 
sure distributions on the contact area between a press and a homogeneous half- 
space being consolidated. 

Theoretical principles for the consolidation of an elastic porous medium have 
been developed by Biot [4, 51. The first boundary value problem of the theory 
of consolidation for a half-space and layer is considered in [S--S] in particular 
loading cases. The plane contact problem of the theory of consolidation for 
the impression of a press with a flat base is a homogeneous half-space has been 
examined in [9, lo]. 

1, General solution of the problem of conroltdation thsory for 
li multllayeted medium, ASI elastic, porous, ~uid-sa~rated, mul~laye~d half- 
space consisting of N layers at rest on an elastic foundation of infinite extent is con- 
sidered. Numbers j .= I,& . . ., N, from top to bottom are ascribed to each layer and 
the elastic foundation is considered as the infinitely thick layer N + 1 , The elastic 
module _Ej, Poisson ratios Vi, consolidation factors cl = 2Gjqjkj expressed in terms 
of the shear moduli Gj = Ej / 2 (‘i +~ vi), the permeability coefficients in the Dar- 
cy law lij and qi = (1 - vj) / (1 - 2vj) for each layer j = 1,2, , . . , N + 1 
can take on different and arbitrary admissible values. The .condition of total adhesion 
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of the layers is assumed on the boundary planes between the layers. Let us note that the 
solution of the problem for the case of attached layers is easily modified even for the 
case of contact of the layers without friction. 

The origin of a cylindrical r, z coordinate system is taken on the boundary plane be- 
tween the layers fl and N + 1. 
(i = 0, 1, 2, . * ., 

The layers are bounded by parallel planes z = Hj 
N) orthogonal to oz -axis in this coordinate system, where z = 

Ha is the outer boundary plane of the multilayered half-space and the quantity Ha 
equals the total thickness of all the layers resting on the elastic foundation, The thick- 
nessesofthe layers Hj_% - Hj (1 = 1, 2, . . . , N) can take on different and arbit- 
rary values (Fig. 1). 

The fundamental equations of the theory of consolidation in displacements for the 
j-th layer in the presence of axial symmetry have the form [63 

( A-&) 1 dej I aoj 
w -- ----- = I -2Vj ar Gj ar 0 

1 ae. 

Awj - 1 _“ZVj &- 

1 a0. 
--_-_-LEO, 

ae. 
cj as CiAej = -& 

(1.1) 

where Uf = nj (r, 2, t), Wj ;= Wj (r, Z, t) are the radial and axial displacements, 
A is the Laplace operator, t is the time, oi is the fluid pressure in the pores, and ej is 

I N+l h 

Fig. 1 

rywhere in the exposition. 

Let us introduce the dimensionless spatial 
variables p = r I a, y = z I H, and the 
time t’ = tc / a2, where c is the consolida- 
tion factor taken as the me~u~rne~t unit (for 
example, it can be set equal to cr or e N+l), 
and a is the radius of the circular contact area. 
The general solution of the contact problem 
in the dimensionless variables p, y, t’ depends 
on the characteristic parameter h = Ha / a, 
the geometric parameters gj = Hi / H, 
determining the boundaries of the layers y == 
yj (1 = 1, 2, . . ., N), the elastic para- 
meters Xj = Ej (1 + vj+i) / Ej+r(i + vj), 
qj =: (1 - vj) / (1 - 2~ j) and the filtra- 
tion parameters Xj = kj I kj+lt cj’ = cj i C. 
The primes on the referred time t’ and on the 
parameter Cj’ will henceforth be omitted eve- 

It is assumed that there is no friction on the contact area and on the whole external 
surface y = 1 of the multilayered half-space. The intensity of the external normal 
load distribution p (p, t) is represented in terms of a multiple Brom~ch-~ankel inte- 

the volume expansion per unit volume. 

gral 
P(P? 4 = fbqB, l)J*f#)d/3 

i d-if= 

F(fh t) = & s -+“‘P*(B, s)ds (y>O) 
Y-403 

(1.2) 
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where the Hankel transform jI (fi, t) of p 
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(p, t) and the Laplace-Carson transform 

P* (p, s) = sfjj(j3. t) e-L’ dt (1.3) 
0 

If there is no external normal load outside the contact area 0 < p < 1 , then the 
function p (p, t) is the unknown intensity of the press pressure on the contact area. 

The general solution of the contact problem for each layer j = 1, 2, . . , N + 1 
of the multilayered half-space being consolidated, which is expressed in terms of the 

repeated Bromwich-Hankel integral, has been constructed and investigated in [I]. The 
normal axial stresses o,j (p, y, t) and the displacements WI (P, y, t) are represented 
in an arbitrary layer i = 1, 2, . . ., N + 1 by the formulas 

ozj = [BL\d(Y, BY t)Jo(PP)@ (1.4) 
0 

- awj = r Atuj (~3 Ps r) Jo (#) @ 
2cj 

0 

(1.5) 

Y+ico 

Amj (Yv BY 0 = & 1 F* (I% 4 s+e”A% (Y, f4 s) ds (m = z, w) (1.6) 
y-km 

Here Amj* (y, fi, s) (m = z, w) are expressed in terms of the arbitrary vector func- 

tion Bj(P7S) = [aj(B9s)9bj(/39s), Cj(B,s), dj@v s), fj(fJ9s>,gj(B9 417 

which corresponds to the I-th layer. The remaining stresses otl, (301, r,zj, the radial 

displacements - Uj and the pressure in the pores oj are represented by analogous for- 

mulas in terms of Amj* (y, p, s) (m = r, 8, CZ, U, CJ) . It should be kept in mind 

that the stresses given are considered positive, as is assumed in the theory of solids as 

contrasted to the theory of elasticity. 
It is required of the general solution of the contact problem of the form (1.4), (1.5) 

that it satisfy conditions on the outer boundary plane in the case of its total permeabi- 

lity (or impermeability) to the interstitial iluid and strain compatibility conditions of 
adjacent fastened layers on their boundary planes 

ozl = p (p, t), rr,i = 0, cl = 0 (or aalla = 0) for y = 1 (1.7) 

(T,j = ~zjt11 Gzj = Lj+l7 (Jj = aj+l 
(1.3) 

aaj aoi+l 
Uj = Uj+lr Wj = Wj+lv - *jr = az for y = Yj 

As has been shown in [I], conditions (1.7) and (1.8) reduce to a matrix system of 
6N + 3 functional equations to determine the vector B: 
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(1.9) 

Bw (B, 4 = [~N+I (PT 4, kw (IL 4, cNt1 (P, 41 

Here the matrix-squares N,, Ml, Ri, PNt1 have the form (15 = 0 .in the case of 
total permeability of the outer surface, and 6 = 1 in the case of total impermeability) 

N,= -1 II 
1 P f---f% q Pp1* - (If PU f'l 

- cl1 PA f‘l w1* -pBhe, 

0 -w,(716 PI+& 0 -w,~l* (-- cd t-- PTfspl 

pi 
pj* ~1+3Bh!/j)~j 1 p -_(I + f&/j) 

-pi 
-qjpj* bh'lj'j I Vj - Bh'/j 

0 

lMj = 
- qisjej* pi 0 - qjsj -_B 

c. 
3 

pi* -PBh!ljrj 1 p - $hj 

-Pi - qirj* -(1 -f3kf/j)q 1 qi - (1 + W!lj) 

0 - qj sjxi’lj rj* f32xj pi (1 qjsjxiqi BLxj 

--1 

--B - (I - Bhllj-,) - P. 
1 

3 
- pj* (1 + Mr/j_J ‘j 

(Ii - Bh?/j_l 
- “i 

- qicj* Oh!/j_l ‘j 
0 

Ri = 
rlj’j --P (1 qjsjpj* P”j 

- Xj-1 - fiXi- WVj-lXj_1 - Xj_1 f’j - @Xj_1 rj* Bh?lj-lXj-l ‘j 
Xj-1 QjXj-1 (I - B’Y]‘-l) Xj-1 - Xi_lfj -4jXj_l’j* (I + Pi?lj_l) Xj_l’j 

0 qjsj4j - P2 0 - vj siqi Pj* - p2’i 

-1 --P -1 

1 Q.V.t1 0 

0 

I’.v+, = - X.V 

%v+ls~v+L - P 

- PX,V 0 

X3 Qx+1X.v y. 

0 
~N+I S,V+lqN+l 

:;2 

:I 

For fixed s and /3 the system of functional equations (1.9) becomes an algebraic system 
from which the column vector B (p, S) can be determined. 

Taking acccnmt of (1.2), (1.4),( 1.6) at y = 1 we find Arl* (1, p, s) == 1 from the 
first boundary condition (1.7). The function &,I* (Y, p, s) is expressed on the outer 
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boundary plane y = 1 in tkrms of the product 

or the row vector 
D (#& s) = (1, q17 +l - #% -cl, -_q,er*, (ph + l)e,) 

by the column vector Br (fi, s) determined from the system (1.9). As has been estab- 
lished in Cl], the function (1.10) has the following asymptote as fi --f 00 : 

A~1(W4=2(~--~1)+ -$- + 0 ($-) + 0 (/3”e-u@) 

(m, T, Gt = cons%> 0) 

(1.11) 

The repeated Laplace-Carson and Hankel transform p* (f3, s) of the function p (p, 
t) of the press pressure intensity on the contact area in (1.4) and (1.5), and the analog- 
ous formulas for the remaining components of the general solution for the j-th layer are 
to be determined from the mixed boundary conditions of the contact problem on the 
outer boundary plane. 

2, Conrtructton of the rolution of ths contact problem, Let us 

consider the contact problem for the following boundary conditions on the boundary plane 
y = 1 of a multi1 ayered half-space. Axial displacements are given on the contact area 
between the press with a flat base and the multilayered half-space, while zero axial 
stresses are given outside the contact area 

-+u%(y* p, t)Jv=I=h(t), od~p<t (2.1) 

(Jzl(Y, P, Qll/=I = 07 l<P<-J (2.2) 

Moreover, it is assumed that the outer boundary plane is completely permeable or im- 
permeable to the interstitial fluid and is free of tangential stresses. These conditions 
are given by the second and third equalities in (1.7) and therefore have already been 
taken into account in constructing the general solution of the problem. 

Substi~~g the ~p~enta~o~ of the functions ~1 (Y, P, t) and otl (y, p, t) by means 
of(1.4),(1.5)into(Z.l) and(2.2) andtakingaccountof(l.6) andA,r* (1, p, a) := 1, 
we obtain dual integral equations in p* (g, s) 

Let us change the order of integration in these equations and let us perform a Laplace- 
Carson transformation ; we consequently obtain 

00 

s 
~*(B,~)A~~(I,B,s)Jo(PB)~S=~*(S), O<PQ~ (2.3) 

0 

(2.4) 
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Subtracting its principal term 2 (1 - vl) from the function A,,* (1, p, s) as p --t 
00, defined by (1. ll), we obtain the new function 

A,,,* (fJ, s) = Awl* (1, p, s) - 2 (1 - VI) (2.5) 

By the Ha&e1 inversion formula and taking account of (1.2) and (1.3), it follows from 
(2.3) that F* (fl, a) is determined by the integral 

(2.6) 
0 

where p* (p, s) is the Laplace-Carson transform of the reqired function of the press 
pressure intensity p (p, t). The function (2.6) converts (2.4) into an identity. 

Considering the variable s a parameter, we reduce the integral equation (2.3) with 
the representations (2.5) and (2.6) taken into account, to a Fredholm integral equation 
of the second kind for the new unknown function ‘p* (2, s) by the known Noble [ll] 
or Lebedev-Ufliand [12] methods just as has been done in [3]: 

a(l-q)p*(5,S)+~K(z,z,s)9*(z.S)dz=.h*(S), OGzdl (2.7) 
0 

which has a continuous symmetric kernel 

K (z, z, s) = f A:: @, s) cos (a#) cos (2s) d/3 (2.8) 
0 

for any s in the square 0 < x, 2 < 1 . 
Taking accamt of (2.5), the asymptotic formula (1.11) evidently assures uniform con- 

vergence of the integral (2.8) in the square 0 < 2, z < 1 to the function K (5, z, a) 
for any s. 

The Laplace-Carson transform and the repeated Laplace-Carson and Hankel transform 
of the required function of the press pressure intensity p (p, t) are expressed in terms 
of ‘p* (x, a) by means of the formulas 

1 

p* (p, s) = _ 1”s %‘p* @* ‘1 dz 
P dp l/za-p 

P 

(2.9) 

(2.10) 

Now, let us express the magnitude of the force applied to the press in terms of ‘p*(z, s) 
1 

P @I = 2d’ 1 PP (P, t) dp 
0 

(2.11) 

To do this, we apply a Laplace-Carson transform on (2.11). whereupon we obtain by 
taking acccunt of (2.9) 

p* (s) = 23~x2 iv* (2, s)dz (2.12) 
0 

Let us represent the solution of the integral equation (2.7) as 

‘p* (z, s) = h* (a)%* (G a) (2.13) 
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where the function cp,* (2, a) satisfies (2.7) for h* (s) = 1. Then (2.12) is rewritten 
as 

p* (s) = 2na2h* (s) i’pr* (x, a) dX (2.14) 
0 

In the space of Laplace-Carson transforms,(2.14) establishes the connection between 
the force P (t) applied to the press and the depth of its submersion h (t). 

We rewrite (2.14) in a different form and we go back to the space of originals 

ash*(s) = P*(s)h,*(s), &“(a) = [2n 5’pl*(z, s)dr]-l (2.15) 
0 

a2h (t) = L-’ P* (s)h,* (s)] (2.16) 

Performing differentiation in (2.9) and afterwards taking account of (2.13) and (2.15), 
we obtain 

a”p* (P9 4 = p* (s)Pl* (P, s) (2.17) 

PI* (p, s) = hl* (s) %‘I* (~3 s) dx 

D 
ax JL/22-_p2 

a2p (P, t) = L-l P* (s)pl* (p, ;)I (2.18) 

It is possible to extract P* (s) = P = con& from under the sign of the operator 
L-l in the case of a constant force P . 

3, Methodr of calculation and mwltr of P numrricrl solution 
of the contact problem in the case of a conotrnt force. Thefunda- 
mental required components of the problem of consolidation of a multilayered half-space 
under the impression of a circular press of constant force P are the time-dependent 
function of the press settlement h, (t) = -2G1aw1 (1, p, t) / P and the press pres- 
sure intensity p1 (p, t) = a2p (p, t) / P on the area 0 < p < 1, which varies along 
the radius and depends on the time. A program in the language ALGOL is compiled to 
calculate the functions h, (t) and p1 (p, t) in the general case of a multilayered half- 
space. Let us briefly examine the calculation methods used to realize numerical solu- 
tions of the contact problem. 

In the general case, the function AEo* (j3, s) in (2.8) for the kernel of the integral 
equation (2.7) is expressed in terms of the solution of a high-order system (1.9). In the 
case of a homogeneous half-space, the function A,* (p, s) is expressed by a simple for- 
mula ; for example, it has the following form for a completely permeable outer surface 

Cl1 &I+ (PI 4 = b (s + Iw’ [(i - v) vs/c + (J” - vj3] - 1 + 2y 
b = c@ (1 - 2v) (I - q-2 

For a two-layered half-space with N = 1 the system (1.9) which contains nine alge- 
braic equations for fixed 8 and s is solved effectively by the Gauss method with samp- 
ling of the principal element, Hence, from one minute to one hour of machine time is 
expended on a BESM-6 to calculate the functions hr (t) and pl(p, t) to 0.25%-1% accu- 
racy. 

In the case iV > 1 the following special method is used to accelerate the numerical 
solution of the system (1.9). We substitute the first three equations of the system (1.9) 
as the last 6N + 3 equations and thereby convert this system into 
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RB = J (3.1) 
MIRfL 0; 0 !O' 

M2R, i . 
;n : . 

R = .' ; = o '.. ; . 

MN ; ‘N+I 

, J=; (3.2) 

. . . . . . . . . . . . ,....... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 

c ; 0 N,O . . . 0 ; 0 I 0 

The solution of (3.1) is expressed by the formula B = R-‘J, where the inverse matrix 

R-l for the block matrix R in (3.2) has the form [13, 141 

(3.3) 

(3.4) 

M;i M;1R2M;1 . . . . M;1R2M,1...RNM$ 

0 M;' . . . . MilR, . ..RNM-.' 

A-'= . . . . . . (3.5) 
0 0 . . . M-,1__, M~l_lRNM-,l 

In 
0 *.. 0 M&i II 

and the matrices S and Q are not used any further. 
According to the form of the free terms J in (3.2), it is clear that it is sufficient to 

know only the third column from the right of the matrix R-’ in (3.3) - (3.5) which 

consists of the first columns of the block-matrices G and F , in order to detertnine 

the vector B (see (1.9) ) . In calculating the required magnitudes of the contact proby 
lem it is sufficient to know the components of the vector B1 in (kg), only on the outer 

surface y = I of the multilayered half-space, for whose calculation the first column 

of the matrix-square G1 in the block-matrix G (3.3) must be found&rice 

Bl(B, 4 = G,(B, 411, (3.6) 

Taling account of the form of the block-matrices C, D (3.2) and A-’ (3.5), we find 
the matrices needed to evaluate B1 (fi, S) (3.6) by means of (3.4) 

The sixth order square matrices Mr-l and R&Pfj” are easily found in analytical form. 
Therefore, evaluation of the vector B, (p, s) (3.6) reduces to calculation of the mat- 
rixCJ2,[6 X SJ andthef irs co t lu mns of the matrices F 13 X 31 and Gl [6 X 31, by 
means of (3.7), which is a fast-response and convenient algorithm for an electronic com- 

puter, and economical in its use of the operational memory, For comparison, let us note 
that evaluation of the vector Br (fi, a) by using the Gauss method requires N2 more 
operations and registers of the electronic computer memory. 

For h* (s) EZ 1 the integral equation (2. ‘7) is converted to an integral equation on the 
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segment --1(z<1withthekemel 
m 

K@ - 2, 3) = 
5 

A,* ff3, s) cos [(z - z) fi] d@ (3.8) 
0 

The converted integral equation is solved by replacing the integral by the tangent 
formula, whereupon a system of n-th order Linear algebraic equations (n = 100 + 1000) 

-0.6’ 0 20 40 t’ 

Fig. 2 Fig, 3 

with Toeplitz matrices is obtained, The ele- 
ments of this matrix are evaluated by the Filon 
method by means of (3.8). The solution of the 
algebraic system is obtained to the accuracy of 
order h2 (h = 2/ (n + l))at the points - 1 + 

4 

0.25 
0.5 

hi 2, - f + 3h12 1.. ., 0 (. . ., 1 - 3h, / 2, 1 - h I 2 by a modified economical me- 
thod [15]. After solving the system with a halved step, the solution of the integral equa- 
tion is refined by the Runge method,, after which the error of the solution is of order h4. 
These questions are considered in greater detail in [163, 

Numerical values of ‘or* (2, s) obtained as a result of solving systems with the step 
h and h I 2 are used to evaluate the integral (2.15) for hr* (4 by the trapezoid formula, 
Then refinement by the Runge scheme is performed. 

To calculate pl* (p, s) by means of (2.17), the value of VI* (1, 4 is obtained from 
the integral equation for x = 1. The integral from (2.17) is converted into 

1-D 

(3.9) 

The values of @r* (CC, s) / ax are calculated first to @ order accuracy by means of 
the values of cp,* (X - h / 2, S) and ‘pl* (CC + h / 2, S) , and then refined according to 
the Runge scheme. The integral (3.9) is evaluated by the Kotes formula for three points 
with the weight 1 i 1/Z The result is hence obtained to accuracy on the order of PI’% 

An inverse Laplace-Carson ~a~forrn is performed to obtain h, (t) (2.18) and PI (P, t) 

by using Lagrange polynomials [l3, 1’7j. To do this it is necessary to know values of 
h,* (s) (2.15) and pl* (p, s) (2.17) at points of the real axis so, 2so ,. . ., mso (m = 3 +- 

II), where SO is selected so that the interval of time variation t= T/so (0.05 < T Q 2.5) 

would correspond to the time segment in which the solution must be obtained. The range 
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of variation of 2’ indicated in the parentheses has been selected from considerations of 
obtaining the contact problem solution to the accuracy needed in practice. Large errors 
originate for values of T outside this range, Finally, let us note that the calculations 
can be performed simultaneously for many values of the time t without a noticeable 
increase in machine time. 

The solution of the problem of consolidation of a multilayered half-space under the 
effect of a pw for t = CO agrees with the solution of the corresponding elasticity the- 
ory problem, and for t = 0 with the solution of the elasticity theory problem for vj = 
0.5 (i = 1, 2 (. . ., N + 1) and previous values of Gj and xj and the other parameters 
[l]. In the case of a homogeneous half-space, the press pressure intensity ~1 (P, 4 at 
t = 0 and t = 03 is expressed by the general formula pr (p, t) = 1 / 2n 1/i - p2. 
The functions p1 (p, t) for a homogeneous half-space are represented in Fig. 2 for t = 0 
and t = 00 (curve I) and for t’ = 0.05, Y = 0.15 (curve Z), while the time depen- 
dence of the settlement of the press k., (ct / a”) is represented in Fig. 3 for Y = 0.15, 
0.3, 0.5. Also given in Fig, 2 are the functions p1 (p, t) in the case of a two-layered 
half-space with the parameters vi = vs = 0.3, x1 = 100 at t = 00 for the values h = 
H,, / a = 0.2, 0.5, 2 (curves 3, 4, 5 ,respectively). (The rm1t.s differ slightly from those 
presented here for other values of the time t > 0 ). 
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The problem of guidance onto a convex target set of a system with slack is 
analyzed on the assumption that the realization of controls of the first player 
is hindered by integral constraints. Sufficient conditions of the problem solva- 
bility are formulated and an example is presented. This paper is related to 

Cl-44j. 

1. Let us consider a controlled system described by the following vector differential 
equation: 

II 6 0 II 

dx 
- = A(t)x+C(u)u, dt (1.1) 

II sin v cos v II 

Here x is the n+limensional phase vector of the system, u is two-dimensional control 
vector of the first player and v is the control of the second player. The realizations of 
the player controls are restricted by the conditions 

su 0 u[z] adz\<pa[t], v[tlE[--a, +a1 

for my t E Ita, 61, ‘(a < n/2) . 
The symbol 11 l 1 denotes the norm in the corresponding Euclidean space, p Lt] are 

the constraints imposed on the resources of the control of the first player, ivld 6 denotes 


